我国在超冷原子量子模拟领域取得重大突破

2016-10-11 14:24:59 来源:上海证券报·中国证券网 作者:

  中国证券网讯 中国科学技术大学和北京大学相关研究人员组成的联合团队在超冷原子量子模拟领域取得重大突破。中国科大-北大联合团队在国际上首次理论提出并实验实现超冷原子二维自旋轨道耦合的人工合成,测定了由自旋轨道耦合导致的新奇拓扑量子物性。这一关键突破将对新奇拓扑量子物态的研究,进而推动人们对物质世界的深入理解带来重大影响。

  该合作成果以研究长文(Research Article)的形式发表在最新一期的国际权威学术期刊《科学》上。由于该工作“对研究超越传统凝聚态物理的奇异现象具有重大潜力”,《科学》杂志在同期的观点栏目(Perspective)专门配发了题为“Coldatoms twisting spin and momentum”的评论文章。

  据央广网10月11日消息,自旋轨道耦合是量子物理学中基本的物理效应。它在多种基本物理现象和新奇量子物态中扮演了核心角色。这些现象导致产生了自旋电子学,拓扑绝缘体,拓扑超导体等当前凝聚态物理中最重要的前沿研究领域。然而,由于普遍存在难以控制的复杂环境,很多重要的新奇物理难以在固体材料中做精确研究。这对相关科研带来很大的挑战。同时,随着超冷原子物理量子模拟领域的重大发展,在超冷原子中实现人工自旋轨道耦合,并研究新奇量子物态已成为该领域最重大的前沿课题之一。冷原子有环境干净,高度可控等重要特性。

  在过去五年里,一维人工自旋轨道耦合在实验上实现,并取得一系列成果。但探索广泛深刻的新型拓扑量子物态须获得二维以上的自旋轨道耦合。如何实现高维自旋轨道耦合已成为超冷原子量子模拟最紧迫的核心课题。

  在超冷原子中实现高维自旋轨道耦合在理论和实验上都是极具挑战性的问题。国际上多个团队均为此付出了许多努力。为解决这一根本困难,北京大学刘雄军理论小组提出了所谓的拉曼光晶格量子系统。发现基于该系统,不仅可完好地实现二维人工自旋轨道耦合,并能得到如量子反常霍尔效应和拓扑超流等深刻的基本物理效应。基于该理论方案,中国科学技术大学潘建伟、陈帅和邓友金等组成的实验小组在经过多年艰苦努力发展起来的超精密激光和磁场调控技术的基础上,成功地构造了拉曼光晶格量子系统,合成二维自旋轨道耦合的玻色-爱因斯坦凝聚体。进一步研究发现,合成的自旋轨道耦合和能带拓扑具有高度可调控性。

  该工作将对冷原子和凝聚态物理研究产生重大影响,基于此工作可研究全新的拓扑物理,包括固体系统中难以观察到的玻色子拓扑效应等,从而为超冷原子量子模拟开辟了一条新道路。该工作在中国科大和北京大学两个单位的紧密合作下完成。这项工作显示我国在超冷原子量子模拟相关研究方向上已走在国际最前列。

  2016年10月4日,诺贝尔物理学奖评委会在斯德哥尔摩的瑞典皇家科学院宣布,2016年诺贝尔物理学奖物理学奖授予三位美国科学家:戴维·索利斯、邓肯·霍尔丹和迈克尔·科斯特利茨,以表彰他们在理论上发现了物质的拓扑相变和拓扑相。过去十年里,这一领域的研究促进了凝聚态物理研究的前沿发展,人们不仅仅对拓扑材料能够在新一代电子器件和超导体中产生应用抱有希望,而且看好其在未来量子计算机方面的应用。

  【相关阅读】

  谷歌或于明年公布全球最强大量子计算机

  谷歌的研究人员或许将在明年底之前公布一款性能强大的量子计算机。据报道称,这或许将是全球最强大的量子计算设备。

  美国量子计算芯片研发取得重要进展

  美国麻省理工学院(MIT)的研发人员研制出一款量子计算原型芯片,可用于实现量子位元的离子阱和激发量子态的激光光路集成在一起。这一成果发表在《自然·纳米技术》杂志网站上。

  我国量子计算领域获重大突破 计算速度或大幅提高

  我国在量子计算领域最近取得重大突破,在世界上首次制备并测量了大约600对呈现纠缠状态的量子,量子计算的速度可以是目前计算速度的万倍、亿倍,量子计算机一秒钟就可以完成超级计算机几年的计算任务。但是它需要利用大量互相纠缠的量子才能够实现。这一突破进一步使量子计算成为可能。

  小型可编程配置量子计算机问世

  英国《自然》杂志在封面位置报告了一项量子计算机重大进展:一种小型可编程重新配置的量子计算机问世,这个也可称为量子计算机结构的装置有望被放大为规模更大的计算机。而长期以来,量子计算的这一特性一直难以实现。

  【个股解析】

  量子通信10只概念股价值解析